

Is BranchCache right for remote,

serverless software distribution?

1E Technical Whitepaper

Microsoft BranchCache and System Center
Configuration Manager 2007

Abstract

BranchCache is a new feature available in Windows Server 2008 R2 and Windows 7 that

reduces WAN bandwidth usage and improves application responsiveness when workstations

in a remote location access content from the head office or data center by downloading and

caching content on the local network as it is requested, making it immediately available to

other clients that subsequently request the same content.

This paper examines the BrachCache functionality specifically in the context of software

distribution using System Center Configuration Manager 2007 to determine if it is an optimal

solution for the deployment of software, patches and operating systems to remote,

serverless branches.

Key Findings

 BranchCache requires content to be hosted on Windows Server 2008 R2 and

participating clients to have Windows 7 or Windows Vista with BITS 4.0 installed

 BranchCache does not require a local server when operated in Distributed Cache
mode, which is ideal for environments of around 50 clients. Microsoft recommend
the Hosted Cache mode (which requires a local Windows Server 2008 R2 server in
the branch) for remote locations that include laptops

 BranchCache is a very efficient method for distributing „ad-hoc‟ content, including
software distributions and updates that are initiated by the user at an arbitrary time
(i.e. non-mandatory Advertisements that do not have a scheduled install time).

 When the same content is requested simultaneously by several clients (as is the
case with scheduled software and patch deployments), some of the content may be
downloaded across the WAN by several clients. If the content is HTTP, BITS is used
which may result in link saturation when multiple clients simultaneously download

Is BranchCache right for Software Distribution?

Copyright © 1E LTD 2010

Version 1.0 document revision 1

Author: Simon Burbidge & Dave Fuller

All rights reserved. No part of this document or of the software (“the software”) to which it

relates shall be reproduced, adapted, stored in a retrieval system, or transmitted by any means,

electronic, mechanical, photocopying, recording, or otherwise, without permission from 1E Ltd.

It is the responsibility of the user to use the software in accordance with this document and 1E

Ltd shall not be responsible if the user fails to do so. Although every precaution has been taken

in the preparation of this document, 1E Ltd and the authors assume no responsibility for errors

or omissions, nor shall they be liable for damages resulting from any information in it.

Trademarks

1E is a trademark of 1E Ltd registered in the UK, with registration applied for in the US and EU.

The 1E device is a trademark of 1E Ltd with registration applied for in the UK, US, EU and

Australia. NIGHTWATCHMAN is a trademark of 1E Ltd registered in the US, with registration

applied for in the EU and Australia. 1E WAKEUP is a trademark of 1E Ltd. MICROSOFT,

WINDOWS SERVER 2008, WINDOWS VISTA, WINDOWS XP, WINDOWS 2000 and

BRANCHCACHE are all trademarks of Microsoft Corporation in the United States and other

countries.

 Contents Page i

Is BranchCache right for remote, serverless software distribution?

Contents

Introduction 1

How does BranchCache work? 1

BranchCache Modes ... 1

Discovery and Download ... 1

Caching 2

Setup and configuration .. 2

The Remote Branch Software Distribution Challenge 2

How does BranchCache measure up? 3

No requirement for a local server ... 3

Efficient use of available bandwidth .. 3

No dependency for any one client to be available at all times ... 4

Efficient use of available disk capacity on local workstations ... 4

Conclusion 5

 Introduction Page 1

Is BranchCache right for remote, serverless software distribution?

Introduction
BranchCache is a new feature of Microsoft Windows Server 2008 R2 and Windows 7 (also

available on Windows Vista with BITS 4.0 installed). It provides a software-based WAN

optimization solution for branch environments enabling remote content requested by clients in

the branch to be cached locally, either on a dedicated server or among peer workstations, so

that it is available locally to other clients in the branch that may require the same content later

rather than having them download it again over the WAN.

Once set up, BranchCache is transparent to the application and is used to manage HTTP, HTTPS

and SMB2 traffic, so any applications that use these protocols can benefit from BranchCache.

Microsoft included BranchCache support in the SP2 release of System Center Configuration

Manager (ConfigMgr) 2007, enabling its software distribution, software updates and image

deployment features to take advantage of this feature in environments where Windows 2008 R2

and Windows 7 have been deployed and the BranchCache feature configured.

This paper takes a look at the BranchCache feature in detail, focusing on how the feature

performs in remote software distribution, patch management and image deployment scenarios.

Although BranchCache can be configured to use a local Windows Server 2008 R2 server to store

the cache (explained in BranchCache Modes), this paper focuses on the server-less Distributed

Mode, on the assumption that if a local server were available, it would make sense to host a

ConfigMgr Secondary Site or Distribution Point on that server anyway.

How does BranchCache work?

BranchCache Modes
BranchCache can operate in one of two modes: Hosted Mode or Distributed Mode.

Hosted Mode requires a local Windows Server 2008 R2 server in the branch and clients to be

configured with the FQDN of this server. When a client requests content from a remote server

that is not already present on the local BranchCache server, the client downloads the content

but then it is moved to the local server (the content is actually advertised to the server and the

server downloads it from the client). The local cache is maintained on the server and

subsequent requests for the same content from other clients in the branch can be served from

this cache.

Distributed Mode does not require a local server. Instead, content is cached on the workstation

clients and is shared with peer clients when they subsequently require the same content

(remember only Windows 7 or Windows Vista with BITS 4.0 clients can participate). Distributed

Mode is suitable for smaller environments (Microsoft recommends up to 50 clients). Clients

participating in peer-to-peer content transfer must be in the same subnet.

Microsoft recommends using Hosted Mode for branches with more than 50 client and branches

that have laptops that may be removed from the network.

Discovery and Download
BranchCache is transparent to the application. When the application running on a BranchCache

enabled client requests content from a BranchCache enabled server over HTTP/HTTPS or SMB2,

the BranchCache client will request content metadata from the remote server. Metadata is

generated on the source server each time it is requested by the client and consists of block

hashes, segment hashes and a segment key, a segment being a collection of blocks. Typically

the hashing results in a compression ratio of 2000:1, meaning that the metadata is typically

1/2000 (or 0.05%) of the size of the source data. A BranchCache client will always request this

metadata from the source server regardless of whether the data already exists locally to ensure

that the source content has not changed.

Once the metadata has been downloaded, in Distributed Mode clients perform a local discovery

(using the Branch Cache Discovery Protocol, which in turn uses the WS-Discovery protocol) to

determine if any of the segments are available within the branch before resorting to

downloading these from the remote server. HTTP/HTTPS content is downloaded using

Background Intelligent Transfer Service (BITS).

Interestingly, when using SMB2, BranchCache can be configured to be invoked according to

connection latency (a threshold set using NETSH) so allowing BranchCache to only be used

when the connection to the server is performing poorly. In contrast, BranchCache using BITS

does not possess this intelligence and is always invoked if enabled.

 The Remote Branch Software Distribution Challenge Page 2

Is BranchCache right for remote, serverless software distribution?

Note that BranchCache does not download files smaller than 64KB (the requesting application

will receive these through normal SMB2 / HTTP transfer).

Caching
When BranchCache is implemented in Distributed Mode, each client is allocated a proportion of

the total (not free) disk size. By default this is 5% but can be adjusted using NETSH. When the

BranchCache service first starts, the cache is initialized with sparse files (0 data files with a .PDS

extension). These will eventually host the downloaded package and hash data. During testing it

was seen that when BranchCache is actually used for the first time, it appears to instantly

reserve half its cache allocation with the 0 byte data .PDS file being expanded to 50% allocated

cash size (regardless of the size of the actual package being downloaded).

It should be noted that the BranchCache is completely independent from the ConfigMgr client

cache. The ConfigMgr client will populate its own cache from wherever BranchCache gets the

content from. Using BranchCache with ConfigMgr therefore requires sufficient disk space on the

client to host the content in both the BranchCache and the ConfigMgr cache.

Setup and configuration
As long as your source servers are running Windows Server 2008 R2 and your workstations are

on Windows 7 (or Vista with BITS 4.0), setting BranchCache up is relatively straightforward.

BranchCache is installed as a Feature in the Server Manager interface. If you want to support

file transfer (SMB2) with BranchCache you need to add the BranchCache for network files role in

the File Services server role (also managed through Server Manager).

On clients, BranchCache is disabled by default. Most organisations would use Group Policy to

enable and configure BranchCache, typically defining the cache mode, size and location.

BranchCache can also be enabled and managed using the NETSH command-line utility. The

NETSH command-line tool can also be used to manage the local cache on a client (such as

flushing it) and can be used to display configuration settings and cache content.

The Remote Branch Software Distribution Challenge
Remote branch offices will typically range from a handful of clients to perhaps a couple of

hundred. Often these will be a healthy mix of desktops and laptops, with some laptops being off

the network for periods of the time. In many cases there is no facility (or desire) to host servers

in these locations, and often network bandwidth to the head offices and datacenters is highly

contested.

The distribution of software (applications, patches and OS images) in these locations is

somewhat different to the user-initiated applications (e.g. accessing documents from a

SharePoint server) commonly used to demonstrate BranchCache functionality.

Many software and patch deployments require content to be distributed to all machines in the

branch at the same time (typically the case with Software Updates, but also with the planned

roll-out of a new application). Software applications and updates may be distributed in the form

of a single „self-extracting‟ file (e.g. in MSI or EXE format), or may involve the distribution of

several files. Distribution of OS images requires the transfer of very large WIM files and the

process of deploying the image to a workstation will typically require additional package content

(applications) not included in the image.

These deployments have to contend with other applications using the WAN and must avoid

adversely impacting the normal flow of business relying upon it. In order to achieve deployment

within an acceptable time period, WAN traffic should be minimised and bandwidth used

efficiently. This involves ensuring the content only traverses the WAN once and is shared out

within the branch (rather than each client obtaining it from the source server), and ensuring the

download process is aware of existing traffic levels and is able to throttle demand on the link

accordingly, taking advantage of „quiet‟ periods but backing off when other traffic requires the

bandwidth.

In a serverless branch, the dependency is on the client workstations to provide the local cache.

It is therefore important that the workstation that hosts the cache is available at all times, or

that the cache is replicated on several machines to provide resilience.

The ideal solution for software distribution to remote branches would have the following

attributes

 No requirement for a local server

 How does BranchCache measure up? Page 3

Is BranchCache right for remote, serverless software distribution?

 Efficient use of available bandwidth, making use of bandwidth as it becomes available
but ensuring it is never saturated and ensuring content is only transferred to the branch
once

 No dependency for any one client to be available at all times

 Efficient use of available disk capacity on local workstations

How does BranchCache measure up?
1E conducted research into the use of BranchCache in the software distribution scenario,

specifically with the use of System Center Configuration Manager (ConfigMgr) 2007 Service Pack

2, which introduced specific integration with BranchCache. This section summarises the results

of our testing in relation to the ideal attributes listed above.

No requirement for a local server
Implementing BranchCache in Distributed mode supports this requirement. Windows 7 and

Windows Vista clients with BITS v4.0 can participate in the peer-caching. Microsoft recommends

that Distributed mode be used for branches up to 50 clients. If clients span multiple subnets

then Distributed mode results in one download per subnet.

In the Key BranchCache Design Points section of the Microsoft Windows Server 20087 R2

BranchCache Design Guide1 it states that the BranchCache data can only be decrypted by

authenticated clients that are members of the same domain as the content server, although we

have not verified this requirement.

Efficient use of available bandwidth
When multiple clients request the same content simultaneously, as is the case when a

deployment is scheduled at a specific time, we observed that all clients begin to download data

from the source server simultaneously. (The BranchCache performance counters were used to

measure the volume of data downloaded from the WAN, downloaded from a peer cache and

served to others on the network).

This is expected as every client must obtain the metadata from the source to ensure data

integrity, and as previously noted this should amount to 0.05% of the content size if 2000:1

compression is achieved. However, we observed that overall, the amount of data downloaded

across the WAN to the branch was between 2 and 11% greater than the content size (i.e. the

overhead was between 2 and 11%), suggesting that clients were simultaneously downloading

content as well as metadata. The tables below show some examples of our test results.

 Bytes from server is the amount of data transferred across the WAN from the remote
server

 Bytes from Cache is the amount of data that the client obtained from the cache on
another local workstation

 Bytes Served is the amount of data that each client provided to other clients from its
own cache

5MB Single file package deployment

Client Bytes from

Server

Bytes from

Cache

Bytes Served

A 204KB 4.8MB 1.6MB

B 347KB 4.6MB 196KB

C 5MB 0 7.6MB

In this test, all clients began downloading from the server simultaneously. After about 20

seconds, A and B switch to peer caching. The bytes served figures indicates that A and B cached

from C as well as from each other. As noted earlier, the file metadata (data that must be first

downloaded from the server) should be using a compression ratio of 2000:1 (0.05% of file size)

or 2.5KB for the test example above. The results show that clients downloaded substantially

more than this amount from the server, suggesting that either the desired compression ratio

1 http://www.microsoft.com/downloads/details.aspx?FamilyID=CBF75A21-BC09-4824-B128-

1A24EE71A9AA&displayLang=en

 How does BranchCache measure up? Page 4

Is BranchCache right for remote, serverless software distribution?

was not achieved, or clients were downloading content as well as metadata from the server,

which is inefficient.

15MB package containing 10 unique files

Client Bytes from

Server

Bytes from

Cache

Bytes Served

A 5.1MB 7.9MB 9.9MB

B 8MB 6MB 13.5MB

C 2.2MB 12MB 2.5MB

In this scenario it is obvious that the clients are simultaneously downloading significant amounts

of content directly from the server. As these clients are using BITS to download the content, it is

not possible to dynamically make optimum use of the available WAN bandwidth2, and as more

clients participate in the download, the chances of saturating the WAN link are increased.

5MB 10 file package (all files had identical content)

Client Bytes from

Server

Bytes from

Cache

Bytes Served

A 4KB 5MB 0

B 500KB 3.8MB 458KB

C 570KB 3.2MB 500KB

The figures illustrate an interesting feature of BranchCache. Although we have a 5MB package,

we have only downloaded a total of approximately 1MB from the server. The Program ran

successfully with the entire package present within the ConfigMgr client cache. BranchCache

was able to recognise the fact that the all files shared the same content and effectively reused

data when supplying the clients. BranchCache data discovery behaviour further illustrates this

point. Within this scenario, despite there being 10 files in the source, clients issued only 2

discovery requests as opposed when dealing with unique files, when a discovery request

appears to be issued per file.

No dependency for any one client to be available at all times
The BranchCache Distributed cache model, it was observed that not all participating clients do

not cache the entire content. During a test deployment of a 2.7GB OS image to 3 computers,

only one client had the full 2.7GB in the BranchCache (although the ConfigMgr client cache had

the whole content) while the others had around 1.3GB. The client that had the full image in its

BranchCache was then switched off and the image deployed to another client in the subnet. This

client had to obtain the balance of the image (1.4GB) from the server.

The other tests described in the previous section also revealed that clients had different volumes

of data in their cache, indicating that the caching is indeed distributed and that in order for

other clients to obtain all the content during a subsequent deployment, multiple clients would

need to be available on the network to enable the client to obtain the total content from the

local network.

Efficient use of available disk capacity on local workstations
Although hard disk capacity is pretty cheap these days, using workstation-class hardware to

store distributed content should still make efficient use of the available space, especially if the

workstation is being used to perform a user‟s day job as well.

As noted previously, BranchCache will allocate 5% (default) of the disk capacity for use. When

the cache is first used, we observed 50% of the allocated space being „used‟, regardless of the

size of the content. If the BranchCache becomes full, older content will be removed to make

room for new content.

2 The BITS client makes use of bandwidth available on the local network adapter and is not aware of

the end-to-end bandwidth available on the WAN. As the local network adapter typically has

significantly more bandwidth (e.g. 100Mb/s) than the WAN link (perhaps 1Mb/s), clients can quickly

saturate the WAN link. It is possible to configure the BITS client to never exceed a set threshold (e.g.

20Kbps) between two specific times in the day, but this does not allow BITS to take advantage of

available bandwidth beyond this threshold during quieter periods.

 Conclusion Page 5

Is BranchCache right for remote, serverless software distribution?

The BranchCache is separate from the ConfigMgr client cache. When using BranchCache with

ConfigMgr for software distribution it is therefore necessary to ensure there is sufficient disk

capacity for the content to be cached twice on each client (once in the BranchCache, once in the

ConfigMgr cache). In practice, observed behaviour3 suggests the ConfigMgr cache is populated

from either the BranchCache on the local client or from the BranchCache on other clients, so the

total capacity required on each client would not always be double the size of the content, but

this must be the assumption when planning capacity.

Conclusion
For organizations that have Windows Server 2008 R2 and Windows 7 deployed throughout their

environment, BranchCache operating in Distributed Cache mode offers an ideal solution for ad-

hoc content retrieval from remote servers, such as obtaining documents from a file share or

SharePoint site, accessing web content or running a non-mandatory (i.e. unscheduled)

ConfigMgr Advertised Program without the need for a local server. In these scenarios it is very

unusual for several clients to simultaneously request the same content.

In the scenario where ConfigMgr is used to schedule the simultaneous deployment of an

application, patch or even OS image to a number of machines, our biggest concern was the

potential to saturate the network, as it was observed that each client started obtaining

significant amounts of content from the remote server before eventually settling down and

retrieving remaining content from peer caches. The optimum solution will only download content

once across the WAN, but our tests suggested that at least some of the content was downloaded

by several clients if the same content is requested simultaneously.

Our tests indicated that once content had been cached in a given subnet, as it was distributed

across a number of clients there was a higher chance that later requests for the same content

would result in some data being downloaded across the WAN from the remote server if some of

the original clients were powered off or removed – perhaps the reason that Microsoft does not

recommend using Distributed Mode in locations that include laptops.

Finally, if updates to the branch are frequent, or include OS images for rebuilding faulty

workstations, the amount of disk space required on each workstation when used with ConfigMgr

can be significant. Content is aged out of the BranchCache as capacity is required, so

applications that are only required occasionally in a branch may not be available even if they

were previously cached.

3 We observed that with any particular package deployment, the volume of data in each participating

BranchCache was different, whereas the volume of data in each participating ConfigMgr cache was

consistent. This suggests that the ConfigMgr cache was populated directly from peer BranchCaches as

well as from the BranchCache on the local client.

